欧美日韩中文国产一区,性欧美大战久久久久久久,免费理论片高清在线观看,男人的天堂在线无码观看视频,四虎影视在线看免费完整版

即時(shí)推送國(guó)內(nèi)外干細(xì)胞臨床醫(yī)學(xué)資訊,為細(xì)胞治療普惠大眾而努力!

  • 公司地址
    中國(guó),浙江,杭州
  • 聯(lián)系電話
    400-622-0089/139-6700-7000

干細(xì)胞治療腦損傷:一種治療腦外傷的新方法

腦損傷一直是治愈的主要問題,因?yàn)樗纳窠?jīng)和周圍細(xì)胞會(huì)出現(xiàn)并發(fā)癥。他們?cè)趯ふ蚁嚓P(guān)治療方面造成問題。并發(fā)癥并不能保證細(xì)胞神經(jīng)結(jié)構(gòu)的有效改善和細(xì)胞功能的恢復(fù)。腦損傷通常是白質(zhì)丟失、萎縮、神經(jīng)功能障礙。它可能導(dǎo)致局灶性喪失、聽力障礙和感覺喪失。這些是標(biāo)志性的腦損傷,目前尚無治愈方法。因此,干細(xì)胞形成了治療腦重大損傷的高效方法。本章將專門討論干細(xì)胞及其對(duì)腦損傷的影響。

腦損傷介紹

腦損傷是一場(chǎng)世界性的災(zāi)難。它仍然是全球性的健康問題,治療選擇有限。圖1顯示了部分大腦[1]。大腦由大腦、小腦和延髓組成。許多損傷發(fā)生在腦部。中風(fēng)、腦外傷帕金森病等疾病在許多患者中頻發(fā)。這些疾病會(huì)造成健康問題,并使個(gè)人承擔(dān)經(jīng)濟(jì)責(zé)任[2]。由于治療選擇非常有限,可持續(xù)治療的希望是基因治療和其他新方法研究中的一個(gè)問題。因此,重點(diǎn)放在干細(xì)胞研究上,以引領(lǐng)再生醫(yī)學(xué)領(lǐng)域[3]

下載.png
圖1:大腦的一部分

這種療法預(yù)示著神經(jīng)再生能力的未來。它們有助于啟動(dòng)臨床研究方法學(xué)、潛在的治療組合以及從餐桌到體外的倫理程序。下圖顯示了人類腦損傷的百分比[3]。

神經(jīng)干細(xì)胞

有兩種調(diào)節(jié)神經(jīng)干細(xì)胞的方法,一種是外源性神經(jīng)干細(xì)胞,另一種是內(nèi)源性神經(jīng)干細(xì)胞[4]。最近的研究揭示了大腦某些區(qū)域存在多能神經(jīng)干細(xì)胞。它們有助于生成神經(jīng)膠質(zhì)細(xì)胞(圖2)。

下載 (1).png
圖2:TBI的主要原因

進(jìn)一步的研究表明,內(nèi)源性和外源性細(xì)胞與中樞神經(jīng)系統(tǒng)協(xié)調(diào)發(fā)揮再生作用。下圖顯示了在大腦中移植神經(jīng)干細(xì)胞[5](圖3)。

下載 (2).png
圖3:在大腦中移植神經(jīng)干細(xì)胞

在對(duì)這些療法的高度反應(yīng)中,細(xì)胞增殖和神經(jīng)發(fā)生一直是一個(gè)亮點(diǎn)。這也表明大腦對(duì)創(chuàng)傷做出了反應(yīng)并修復(fù)了受損部分[6]。這種治療上的成功促使科學(xué)家們進(jìn)一步研究創(chuàng)傷性損傷,例如帕金森病和其他神經(jīng)退行性疾病[7]。

移植細(xì)胞的潛力是分化為區(qū)域特異性細(xì)胞,并與宿主組織結(jié)合以替代受損部位的細(xì)胞?;蛘?,它們還提供神經(jīng)遞質(zhì)以促進(jìn)宿主組織的再生。(圖4)顯示神經(jīng)干細(xì)胞移植[8]。

下載 (3).png
圖4:神經(jīng)干細(xì)胞移植

腦損傷治療

對(duì)治療和結(jié)果的系統(tǒng)回顧,在腦細(xì)胞減少的部位產(chǎn)生了潛在的治療方法[9]。結(jié)合干細(xì)胞移植的療法已經(jīng)產(chǎn)生了友好的解決方案,并且還有助于聯(lián)合藥物參與有效治愈受損的腦細(xì)胞[10]。腦損傷通常對(duì)治療學(xué)研究開放。當(dāng)與干細(xì)胞結(jié)合時(shí),特定激素具有有益于細(xì)胞的功能。各種中樞神經(jīng)系統(tǒng)疾病都傾向于抗炎作用。它們還促進(jìn)祖細(xì)胞增殖并改善創(chuàng)傷性腦損傷(圖5)。

下載 (4).png
圖5:這表明祖細(xì)胞(膠質(zhì)細(xì)胞)在修復(fù)腦損傷方面發(fā)揮作用

內(nèi)源-外源內(nèi)皮祖細(xì)胞

神經(jīng)再生促進(jìn)祖細(xì)胞修復(fù)腦細(xì)胞。在體外模型測(cè)試中,大鼠被注射內(nèi)皮祖細(xì)胞 (EPC),結(jié)果顯示神經(jīng)干細(xì)胞表達(dá)增強(qiáng)的血管密度、occulin表達(dá)、減少水腫和增加血腦屏障完整性[12]。此外,屏障中存在的黃體酮會(huì)逆轉(zhuǎn)完整性,因?yàn)樗鼈儠?huì)形成用于大腦修復(fù)的EPC促進(jìn)劑。為了進(jìn)一步推進(jìn)這一理論,進(jìn)行了另一組實(shí)驗(yàn),結(jié)果占上風(fēng)[13]。將這些實(shí)驗(yàn)結(jié)合在一起表明黃體酮有助于刺激腦損傷干細(xì)胞的再生以治愈腦損傷。下圖顯示了腦損傷的不同研究[14]。不同程度的腦損傷和年齡分類[15]

下載 (5).png
圖1:上圖表示在手術(shù)和年齡因素控制前后存在的祖細(xì)胞數(shù)量

間充質(zhì)干細(xì)胞增強(qiáng)促紅細(xì)胞生成素 (EPO) 激素

間充質(zhì)干細(xì)胞有助于產(chǎn)生稱為促紅細(xì)胞生成素的增強(qiáng)激素。這些激素是自然產(chǎn)生的,有助于減少血細(xì)胞,從而有助于治愈腦損傷[16]。它具有神經(jīng)營(yíng)養(yǎng)、血管生成和抗炎作用。使用小鼠模型進(jìn)行體外測(cè)試,EPO與MSC結(jié)合可促進(jìn)細(xì)胞增殖、神經(jīng)膠質(zhì)細(xì)胞活化和血管密度增加。圖6幫助我們了解NSC在腦損傷中的作用[17]。

下載 (6).png
圖6:神經(jīng)干細(xì)胞在腦損傷方面的工作

神經(jīng)干細(xì)胞因子

大多數(shù)抗炎細(xì)胞一直在抵消大腦中干細(xì)胞的作用。它們確保細(xì)胞從所需目標(biāo)遷移并中斷增殖,從而在腦損傷部位創(chuàng)造危險(xiǎn)環(huán)境。因此,生物相容性支架用于遞送細(xì)胞以達(dá)到治療目標(biāo)。借助殼聚糖的廣泛框架,肝素和成纖維細(xì)胞NSC細(xì)胞可以摻入創(chuàng)傷性腦損傷部位以增強(qiáng)治療和治愈。它們可以改善功能恢復(fù),還有助于NSC的存活,直至腦細(xì)胞恢復(fù)和治愈[14-17]。

圖7是對(duì)腦損傷后NSC的清晰認(rèn)識(shí)[18]。進(jìn)行的大量研究表明,腦損傷的內(nèi)源性細(xì)胞會(huì)導(dǎo)致細(xì)胞增殖。他們?cè)谑軅迯?fù)后有強(qiáng)勁的增長(zhǎng),通常表示新神經(jīng)元的產(chǎn)生,以便更好地恢復(fù)細(xì)胞。這些研究強(qiáng)烈表明大腦修復(fù)和再生是通過內(nèi)源性神經(jīng)干細(xì)胞完成的[19]。通過外源性手段增加內(nèi)源性程度以增加神經(jīng)干細(xì)胞,這是一種潛在的腦損傷治療方法。圖8顯示了大腦中內(nèi)源性細(xì)胞的標(biāo)記[20]。

下載 (7).png
圖7:此圖是腦損傷后對(duì)NSC的清晰認(rèn)識(shí)
下載 (8).png
圖8:大腦內(nèi)源性細(xì)胞的標(biāo)記

迄今為止,內(nèi)源性神經(jīng)干細(xì)胞是治療腦損傷的最佳選擇[21,22]。靜脈進(jìn)入大腦的方法表明,它們有助于生長(zhǎng)細(xì)胞而不是增殖并改善創(chuàng)傷性腦損傷的功能恢復(fù)[23]。下圖顯示了神經(jīng)干細(xì)胞的靜脈注射(圖 9,10)[24]。

下載 (9).png
圖9:這顯示了在大腦中持續(xù)修復(fù)的NSC標(biāo)記
下載 (10).png
圖10: 神經(jīng)干細(xì)胞的靜脈注射

結(jié)論

在過去的幾十年里,人們探索了神經(jīng)再生的各種來源。甚至采用了間充質(zhì)干細(xì)胞方法。一系列細(xì)胞來源確定顯示出潛力,但沒有什么能像神經(jīng)干細(xì)胞那樣突出地增殖、靶向和修復(fù)腦損傷。

事實(shí)證明,它們能夠存活、增殖并遷移到皮層,分化為神經(jīng)元和星形膠質(zhì)細(xì)胞,功能恢復(fù)率提高。神經(jīng)干細(xì)胞還顯示出改進(jìn)的運(yùn)動(dòng)和空間學(xué)習(xí)功能,可以在受傷部位存活長(zhǎng)達(dá)13周并完全治愈細(xì)胞。一些研究表明神經(jīng)干細(xì)胞具有成熟的神經(jīng)膠質(zhì)細(xì)胞特性,展示了區(qū)域細(xì)胞特性。

參考資料

[1]Gonzales-Portillo B, Lippert T, Nguyen H, Lee JY, Borlongan CV. (2019) Hyperbaric oxygen therapy: A new look on treating stroke and traumatic brain injury. Brain Circ. 5(3):101-5.??

[2]Sadanandan N, Di Santo S, Widmer HR. (2019) Another win for endothelial progenitor cells: Endothelial progenitor cell-derived conditioned medium promotes proliferation and exerts neuroprotection in cultured neuronal progenitor cells. Brain Circ. 5(3):106-11. 

[3]Zhang H, Lee JY, Borlongan CV, Tajiri N. (2019) A brief physical activity protects against ischemic stroke. Brain Circ.5(3):112-8.

[4]Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, et al.  (2014) Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One. 9:e90953.

[5]Jakubechova J, Repiska V, Altaner C (2017) Exosomes of human mesenchymal stem/stromal/medicinal signaling cells. Neoplasma. 64(6):809-815. 

[6]Amin AR, Attur MG, Thakker GD, Patel PD, Vyas PR, et al. (1996) A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc Natl Acad Sci U S A. 93:14014-19.

[7]Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, et al. (2001) Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol. 167(1):27-39.

[8]Altman J, Das GD (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 124(3):319-35.

[9]Buylla A, Nottebohm F. (1988) Migration of young neurons in adult avian brain. Nature. 335:353-4.

[10]Villemure JG, Brunet JF, Bloch JJ, Deglon N, Kostic C. et al. (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol. 170(1):48-62.

[11]Bakshi A, Shimizu S, Keck CA, Cho S, LeBold DG, et al. (2006) Neural progenitor cells engineered to secrete GDNF show enhanced survival, neuronal differentiation and improve cognitive function following traumatic brain injury. Eur J Neurosci. 23(8):2119-2134.

[12]Banasar M, Hery M, Brezun JM, Daszuta A. (2001) Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus. Eur J Neurosci. 14(9):1417-24.

[13]Barha CK, Ishrat T, Epp JR, Galea LA, Stein DG .(2011)  Progesterone treatment normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus after traumatic brain injury. Exp Neurol. 231(1):72-81.

[14]Chirumamilla S, Sun D, Bullock MR, Colello RJ. (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma. 19(6):693-703.

[15]Clellend CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, et al. (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 325(5937):210-13.

[16]Curtis MA, Low VF, Faull RL. (2012) Neurogenesis and progenitor cells in the adult human brain: A comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol. 72(7):990-1005.

[17]Deng W, Saxe MD, Gallina IS, Gage FH. (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci. 29(43):13532-42.

[18]Borlongon CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, et al.  (2004) Intracerebral xenografts of mouse bone marrow cells in adult rats facilitate restoration of cerebral blood flow and blood-brain barrier. Brain Res. 1009(1-2):26-33. 

[19]Borlongon CV, Glover LE, Tajiri N, Kaneko Y, Freeman TB. (2011) The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol. 95(2):213-228.

[20]randau S, Jakob M, Hemeda H, Bruderek K, Janeschik S, et al.  (2010) Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol. 88(5):1005-15. 

[21]Chen T, Yu Y, Tang LJ, Kong L, Zhang C, et al. (2017) Neural stem cells over-expressing brain-derived neurotrophic factor promote neuronal survival and cytoskeletal protein expression in traumatic brain injury sites. Neural Regen Res. 12(3):433-39.

[22]Lyden J, Grant S, Ma T. (2019) Altered metabolism for neuroprotection provided by mesenchymal stem cells. Brain Circ. 5(3):140-4.

[23Bonsack B, Borlongan MC, Lo EH, Arai K. (2019) Brief overview: Protective roles of astrocyte-derived pentraxin-3 in blood-brain barrier integrity. Brain Circ. 5(3):145-9. 

[24]Corey S, Luo Y. (2019) Circular RNAs and neutrophils: Key factors in tackling asymptomatic MMD. Brain Circ. 5(3):150-5.

免責(zé)說明:本文僅用于傳播科普知識(shí),分享行業(yè)觀點(diǎn),不構(gòu)成任何臨床診斷建議!如有版權(quán)等疑問,請(qǐng)隨時(shí)聯(lián)系我。

山東大學(xué)齊魯醫(yī)院:干細(xì)胞治療膝骨性關(guān)節(jié)炎可改善膝關(guān)節(jié)功能并減輕疼痛
? 上一篇 2023年3月15日
干細(xì)胞治療視網(wǎng)膜退行性疾病和糖尿病性視網(wǎng)膜病變的研究進(jìn)展
下一篇 ? 2023年3月15日