重度抑郁癥 (MDD),俗稱(chēng)抑郁癥,是一種使人衰弱的疾病,影響全球約3.8%的人口,其中5.0%是成年人,5.7%是60歲以上的人。MDD不同于常見(jiàn)的情緒變化和由于灰質(zhì)和白質(zhì)(包括額葉、海馬體、顳葉、丘腦、紋狀體和杏仁核)的細(xì)微變化而導(dǎo)致的短暫情緒反應(yīng)。如果它以中等或嚴(yán)重的強(qiáng)度發(fā)生,它可能對(duì)一個(gè)人的整體健康有害。它會(huì)使一個(gè)人在個(gè)人、職業(yè)和社交生活中表現(xiàn)不佳而痛苦不堪。
一、簡(jiǎn)介
重度抑郁癥 (MDD) 被認(rèn)為是最常見(jiàn)的精神疾病,根據(jù)世界衛(wèi)生組織 (WHO) 的說(shuō)法,它是導(dǎo)致殘疾的主要原因。情緒低落、對(duì)日?;顒?dòng)的興趣下降、內(nèi)疚、失去快樂(lè)、注意力難以集中、自卑、睡眠困難和食欲改變是 MDD 的一些癥狀。
這些問(wèn)題可能會(huì)長(zhǎng)期存在或反復(fù)出現(xiàn),嚴(yán)重影響一個(gè)人進(jìn)行日?;顒?dòng)的能力。在最壞的情況下,抑郁癥會(huì)導(dǎo)致自殺念頭。抑郁癥與患其他嚴(yán)重疾?。ㄈ缧难芗膊。┑膸茁试黾佑嘘P(guān)、中風(fēng)、阿爾茨海默病、癲癇、糖尿病和癌癥。抑郁癥狀在老年人中更常見(jiàn),但這是由于與衰老相關(guān)的因素造成的,包括身體殘疾、認(rèn)知缺陷、社會(huì)經(jīng)濟(jì)缺陷和其他因素。難治性抑郁癥 (TRD) 可由發(fā)育過(guò)程中持續(xù)暴露于環(huán)境壓力源引起。幾乎所有的抗抑郁藥都以相同的方式起作用,并在整個(gè)生命周期內(nèi)有效治療嚴(yán)重的MDD。
然而,抗抑郁治療有許多不良副作用,包括鎮(zhèn)靜、頭痛、血壓下降、失眠、體重增加、消化不良、情緒激動(dòng)、口干、腹瀉和性功能障礙。這通常會(huì)導(dǎo)致患者依從性差,導(dǎo)致抑郁癥狀復(fù)發(fā)和更高的自殺風(fēng)險(xiǎn)。
2. 抑郁癥的神經(jīng)化學(xué):?jiǎn)伟芳僬f(shuō)
去甲腎上腺素 (NE)、血清素(5-羥色胺,5HT)和多巴胺 (DA) 失調(diào)與抑郁癥的病理變化有關(guān)(圖1)。根據(jù)抑郁癥的單胺假說(shuō),NE、5HT和DA同步發(fā)揮作用,調(diào)節(jié)情緒和情緒。在情緒低落時(shí),觀察到這三種單胺的失調(diào),以及細(xì)胞外5HT水平低于平均水平。據(jù)報(bào)道,與年齡匹配的對(duì)照組相比,抑郁癥患者的尿液、血液和腦脊液 (CSF) 中的單胺類(lèi)和代謝物含量較低。
3. 抑郁癥的生長(zhǎng)因子
有幾種與抑郁癥狀相關(guān)的生物學(xué)因素,如中所示。與抑郁行為相關(guān)的神經(jīng)回路中的突觸可塑性受腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)調(diào)節(jié)。有趣的是,壓力引起的大腦結(jié)構(gòu)和突觸可塑性損傷可能會(huì)被BDNF上調(diào)逆轉(zhuǎn),從而導(dǎo)致認(rèn)知的靈活性和適應(yīng)可能刺激抑郁發(fā)作的環(huán)境變化的能力提高。根據(jù)目前的研究,在抑郁癥受試者中,血液中的BDNF水平較低,并且隨著抗抑郁治療的增加而增加,如圖2。研究表明,應(yīng)激誘導(dǎo)的表觀遺傳變化可導(dǎo)致抑郁癥。對(duì)MDD顳葉結(jié)構(gòu)研究的兩項(xiàng)薈萃分析表明,復(fù)發(fā)性抑郁癥患者的海馬體較小。此外,無(wú)論使用何種藥物,升高的BDNF血漿水平都與更好的治療結(jié)果有關(guān)。
在分子、遺傳、表觀遺傳、細(xì)胞和系統(tǒng)水平上有多種生物學(xué)原因。這些原因會(huì)導(dǎo)致臨床抑郁癥,并且可能會(huì)出現(xiàn)多種癥狀,這些癥狀可能因人而異。
4. 神經(jīng)干細(xì)胞與抑郁癥
近年來(lái),神經(jīng)干細(xì)胞移植引起了人們的興趣,大量發(fā)表的文獻(xiàn)闡明成人大腦維持多能NSCs,這與大腦的舊教條形成鮮明對(duì)比,大腦通常是不變的和靜止的器官,缺乏再生的靈活性。憑借其最普遍接受的顯著特征,NSCs也被歸于所謂的組織
干細(xì)胞 ,具有在特定條件下保持未分化而沒(méi)有概述表型的能力、分裂和增殖(自我更新)的能力,以及在神經(jīng)發(fā)生開(kāi)始時(shí)分化成神經(jīng)元、少突膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞等后代的能力。它們是在成年哺乳動(dòng)物大腦的“神經(jīng)源性”區(qū)域(例如海馬體)中發(fā)現(xiàn)的獨(dú)特類(lèi)型的感受態(tài)細(xì)胞、腦室下區(qū)和神經(jīng)結(jié)構(gòu),并可能自發(fā)地和響應(yīng)局部信號(hào)感應(yīng)產(chǎn)生神經(jīng)元。神經(jīng)發(fā)生 (NG) 被認(rèn)為需要一組明確的信號(hào)線索,以通過(guò)周?chē)h(huán)境在空間和時(shí)間上非常協(xié)調(diào)的方式傳遞給神經(jīng)源性細(xì)胞,以激活干細(xì)胞或祖細(xì)胞以發(fā)育新的神經(jīng)元,此外,眾所周知的調(diào)制器,損傷被認(rèn)為足以激活神經(jīng)發(fā)生。BDNF 的表達(dá)也會(huì)刺激神經(jīng)發(fā)生。NSC通常是從成人腦組織中提取的,包括死后腦組織,并成為增加或恢復(fù)受中樞神經(jīng)系統(tǒng)相關(guān)疾病影響的腦組織質(zhì)量和功能的重要候選者。NSC在體外進(jìn)行克隆擴(kuò)增、基因操作或刺激以轉(zhuǎn)化CNS細(xì)胞譜系。了解成人神經(jīng)發(fā)生的調(diào)節(jié)方式需要大量工作。
生長(zhǎng)因子、遞質(zhì)、酶、組織激素、神經(jīng)調(diào)節(jié)劑和抗體預(yù)計(jì)會(huì)被激活的細(xì)胞分泌到局部組織環(huán)境中,從而引發(fā)所需的組織反應(yīng)。在受損的神經(jīng)元和神經(jīng)膠質(zhì)網(wǎng)絡(luò)中,新賦能的細(xì)胞及其后代可以作為功能增強(qiáng)劑和支架“修復(fù)劑”發(fā)揮作用。這些特性導(dǎo)致創(chuàng)傷和灌注問(wèn)題(如中風(fēng) 、局部缺血或神經(jīng)退行性病)療法的發(fā)明取得實(shí)質(zhì)性進(jìn)展。
不出所料,NSCs在精神衛(wèi)生保健方面的前景正在引起激烈爭(zhēng)論。許多精神疾病可能具有遺傳變異以及大多數(shù)未知的特定細(xì)胞和解剖相關(guān)性。
在抑郁癥中,海馬體中經(jīng)常會(huì)出現(xiàn)神經(jīng)發(fā)生減少。這進(jìn)一步意味著神經(jīng)發(fā)生缺陷可能導(dǎo)致與抑郁癥相關(guān)的癥狀,而增強(qiáng)的神經(jīng)發(fā)生可以介導(dǎo)抗抑郁作用并緩解癥狀。
然而,在建立這種雙向概念的完全合法性之前,必須首先調(diào)和關(guān)于神經(jīng)發(fā)生在緩解抑郁癥中的作用的各種相互矛盾的報(bào)告。成人海馬神經(jīng)發(fā)生的激活導(dǎo)致神經(jīng)體細(xì)胞后代轉(zhuǎn)化為成熟的CNS神經(jīng)元。然后,這些中樞神經(jīng)系統(tǒng)神經(jīng)元獲得功能和形態(tài)特性,以整合到現(xiàn)有的神經(jīng)網(wǎng)絡(luò)或替換其他各種已經(jīng)死亡的腦細(xì)胞。
參考資料:
Maj, M. When Does Depression Become a Mental Disorder? Br. J. Psychiatry 2011, 199, 85–86.
Lang, U.E.; Borgwardt, S. Molecular Mechanisms of Depression: Perspectives on New Treatment Strategies. Cell Physiol. Biochem. 2013, 31, 761–777.
Ramasubbu, R.; Patten, S.B. Effect of Depression on Stroke Morbidity and Mortality. Can. J. Psychiatry 2003, 48, 250–257.
Van der Kooy, K.; van Hout, H.; Marwijk, H.; Marten, H.; Stehouwer, C.; Beekman, A. Depression and the Risk for Cardiovascular Diseases: Systematic Review and Meta Analysis. Int. J. Geriat. Psychiatry 2007, 22, 613–626.
Green, R.C.; Cupples, L.A.; Kurz, A.; Auerbach, S.; Go, R.; Sadovnick, D.; Duara, R.; Kukull, W.A.; Chui, H.; Edeki, T.; et al. Depression as a Risk Factor for Alzheimer Disease: The MIRAGE Study. Arch. Neurol. 2003, 60, 753.
Hesdorffer, D.C.; Hauser, W.A.; Annegers, J.F.; Cascino, G. Major Depression Is a Risk Factor for Seizures in Older Adults. Ann. Neurol. 2000, 47, 246–249.
Nouwen, A.; Lloyd, C.E.; Pouwer, F. Depression and Type 2 Diabetes Over the Lifespan: A Meta-Analysis. Diabetes Care 2009, 32, e56.
Penninx, B.W.J.H.; Guralnik, J.M.; Havlik, R.J.; Pahor, M.; Ferrucci, L.; Cerhan, J.R.; Wallace, R.B. Chronically Depressed Mood and Cancer Risk in Older Persons. JNCI J. Natl. Cancer Inst. 1998, 90, 1888–1893.
Kaur, J.; Ghosh, S.; Singh, P.; Dwivedi, A.K.; Sahani, A.K.; Sinha, J.K. Cervical Spinal Lesion, Completeness of Injury, Stress, and Depression Reduce the Efficiency of Mental Imagery in People With Spinal Cord Injury. Am. J. Phys. Med. Rehabil. 2022, 101, 513–519.
Maniam, J.; Antoniadis, C.P.; Youngson, N.A.; Sinha, J.K.; Morris, M.J. Sugar Consumption Produces Effects Similar to Early Life Stress Exposure on Hippocampal Markers of Neurogenesis and Stress Response. Front. Mol. Neurosci. 2015, 8, 86.
Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am. J. Psychiatry 2006, 163, 1905–1917.
Akil, H.; Gordon, J.; Hen, R.; Javitch, J.; Mayberg, H.; McEwen, B.; Meaney, M.J.; Nestler, E.J. Treatment Resistant Depression: A Multi-Scale, Systems Biology Approach. Neurosci. Biobehav. Rev. 2018, 84, 272–288.
Salzman, C.; Wong, E.; Wright, B.C. Drug and ECT Treatment of Depression in the Elderly, 1996–2001: A Literature Review. Biol. Psychiatry 2002, 52, 265–284.
Keller, M.B.; Hirschfeld, R.M.A.; Demyttenaere, K.; Baldwin, D.S. Optimizing Outcomes in Depression: Focus on Antidepressant Compliance. Int. Clin. Psychopharmacol. 2002, 17, 265–271.
Nestler, E.J.; Carlezon, W.A. The Mesolimbic Dopamine Reward Circuit in Depression. Biol. Psychiatry 2006, 59, 1151–1159.
Roy, A. Cerebrospinal Fluid Monoamine Metabolites and Suicidal Behavior in Depressed Patients: A 5-Year Follow-up Study. Arch. Gen. Psychiatry 1989, 46, 609.
Klimek, V.; Stockmeier, C.; Overholser, J.; Meltzer, H.Y.; Kalka, S.; Dilley, G.; Ordway, G.A. Reduced Levels of Norepinephrine Transporters in the Locus Coeruleus in Major Depression. J. Neurosci. 1997, 17, 8451–8458.
Marshe, V.S.; Maciukiewicz, M.; Rej, S.; Tiwari, A.K.; Sibille, E.; Blumberger, D.M.; Karp, J.F.; Lenze, E.J.; Reynolds, C.F.; Kennedy, J.L.; et al. Norepinephrine Transporter Gene Variants and Remission From Depression With Venlafaxine Treatment in Older Adults. Am. J. Psychiatry 2017, 174, 468–475.
Dunn, A.J. Effects of Cytokines and Infections on Brain Neurochemistry. Clin. Neurosci. Res. 2006, 6, 52–68.
Anacker, C.; Cattaneo, A.; Musaelyan, K.; Zunszain, P.A.; Horowitz, M.; Molteni, R.; Luoni, A.; Calabrese, F.; Tansey, K.; Gennarelli, M.; et al. Role for the Kinase SGK1 in Stress, Depression, and Glucocorticoid Effects on Hippocampal Neurogenesis. Proc. Natl. Acad. Sci. USA 2013, 110, 8708–8713.
Jokinen, J.; Nordstr?m, A.-L.; Nordstr?m, P. The Relationship Between CSF HVA/5-HIAA Ratio and Suicide Intent in Suicide Attempters. Arch. Suicide Res. 2007, 11, 187–192.
Pizzagalli, D.A.; Berretta, S.; Wooten, D.; Goer, F.; Pilobello, K.T.; Kumar, P.; Murray, L.; Beltzer, M.; Boyer-Boiteau, A.; Alpert, N.; et al. Assessment of Striatal Dopamine Transporter Binding in Individuals With Major Depressive Disorder: In Vivo Positron Emission Tomography and Postmortem Evidence. JAMA Psychiatry 2019, 76, 854.
Cassano, P.; Lattanzi, L.; Fava, M.; Navari, S.; Battistini, G.; Abelli, M.; Cassano, G.B. Ropinirole in Treatment-Resistant Depression: A 16-Week Pilot Study. Can. J. Psychiatry 2005, 50, 357–360.
Descarries, L.; Watkins, K.C.; Garcia, S.; Beaudet, A. The Serotonin Neurons in Nucleus Raphe Dorsalis of Adult Rat: A Light and Electron Microscope Radioautographic Study. J. Comp. Neurol. 1982, 207, 239–254.
Bunin, M.A.; Wightman, R.M. Quantitative Evaluation of 5-Hydroxytryptamine (Serotonin) Neuronal Release and Uptake: An Investigation of Extrasynaptic Transmission. J. Neurosci. 1998, 18, 4854–4860.
Steinbusch, H.W.M. Distribution of Serotonin-Immunoreactivity in the Central Nervous System of the Rat—Cell Bodies and Terminals. Neuroscience 1981, 6, 557–618.
Mann, J. Role of the Serotonergic System in the Pathogenesis of Major Depression and Suicidal Behavior. Neuropsychopharmacology 1999, 21, 99S–105S.
Chaouloff, F. Serotonin and Stress. Neuropsychopharmacology 1999, 21, 28S–32S.
Andrews, P.W.; Bharwani, A.; Lee, K.R.; Fox, M.; Thomson, J.A. Is Serotonin an Upper or a Downer? The Evolution of the Serotonergic System and Its Role in Depression and the Antidepressant Response. Neurosci. Biobehav. Rev. 2015, 51, 164–188.
Bot, M.; Chan, M.K.; Jansen, R.; Lamers, F.; Vogelzangs, N.; Steiner, J.; Leweke, F.M.; Rothermundt, M.; Cooper, J.; Bahn, S.; et al. Serum Proteomic Profiling of Major Depressive Disorder. Transl. Psychiatry 2015, 5, e599.
Quintana, J. Platelet Serotonin and Plasma Tryptophan Decreases in Endogenous Depression. Clinical, Therapeutic, and Biological Correlations. J. Affect. Disord. 1992, 24, 55–62.
Park, C.; Rosenblat, J.D.; Brietzke, E.; Pan, Z.; Lee, Y.; Cao, B.; Zuckerman, H.; Kalantarova, A.; McIntyre, R.S. Stress, Epigenetics and Depression: A Systematic Review. Neurosci. Biobehav. Rev. 2019, 102, 139–152.
Ghosh, S.; Sinha, J.K.; Raghunath, M. “Obesageing”: Linking Obesity & Ageing. Indian J. Med. Res. 2019, 149, 610–615.
Campbell, S.; MacQueen, G. An Update on Regional Brain Volume Differences Associated with Mood Disorders. Curr. Opin. Psychiatry 2006, 19, 25–33.
Videbech, P. Hippocampal Volume and Depression: A Meta-Analysis of MRI Studies. Am. J. Psychiatry 2004, 161, 1957–1966.
Mishra, P.; Mittal, A.K.; Kalonia, H.; Madan, S.; Ghosh, S.; Sinha, J.K.; Rajput, S.K. SIRT1 Promotes Neuronal Fortification in Neurodegenerative Diseases through Attenuation of Pathological Hallmarks and Enhancement of Cellular Lifespan. Curr. Neuropharmacol. 2021, 19, 1019–1037.
Moroi, K.; Sato, T. Comparison between Procaine and Isocarboxazid Metabolism in Vitro by a Liver Microsomal Amidase-Esterase. Biochem. Pharmacol. 1975, 24, 1517–1521.
Pittenger, C.; Duman, R.S. Stress, Depression, and Neuroplasticity: A Convergence of Mechanisms. Neuropsychopharmacology 2008, 33, 88–109.
Aydemir, O.; Deveci, A.; Taneli, F. The Effect of Chronic Antidepressant Treatment on Serum Brain-Derived Neurotrophic Factor Levels in Depressed Patients: A Preliminary Study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2005, 29, 261–265.
Ricken, R.; Adli, M.; Lange, C.; Krusche, E.; Stamm, T.J.; Gaus, S.; Koehler, S.; Nase, S.; Bschor, T.; Richter, C.; et al. Brain-Derived Neurotrophic Factor Serum Concentrations in Acute Depressive Patients Increase During Lithium Augmentation of Antidepressants. J. Clin. Psychopharmacol. 2013, 33, 806–809.
Bauer, M.; Adli, M.; Bschor, T.; Pilhatsch, M.; Pfennig, A.; Sasse, J.; Schmid, R.; Lewitzka, U. Lithium’s Emerging Role in the Treatment of Refractory Major Depressive Episodes: Augmentation of Antidepressants. Neuropsychobiology 2010, 62, 36–42.
Coradduzza, D.; Garroni, G.; Congiargiu, A.; Balzano, F.; Cruciani, S.; Sedda, S.; Nivoli, A.; Maioli, M. MicroRNAs, Stem Cells in Bipolar Disorder, and Lithium Therapeutic Approach. Int. J. Mol. Sci. 2022, 23, 10489.
Mondal, A.C.; Fatima, M. Direct and Indirect Evidences of BDNF and NGF as Key Modulators in Depression: Role of Antidepressants Treatment. Int. J. Neurosci. 2019, 129, 283–296.
de Miranda, A.S.; de Barros, J.L.V.M.; Teixeira, A.L. Is Neurotrophin-3 (NT-3): A Potential Therapeutic Target for Depression and Anxiety? Expert Opin. Ther. Targets 2020, 24, 1225–1238.
Diniz, B.S.; Teixeira, A.L.; Miranda, A.S.; Talib, L.L.; Gattaz, W.F.; Forlenza, O.V. Circulating Glial-Derived Neurotrophic Factor Is Reduced in Late-Life Depression. J. Psychiatr. Res. 2012, 46, 135–139.
Evans, S.J.; Choudary, P.V.; Neal, C.R.; Li, J.Z.; Vawter, M.P.; Tomita, H.; Lopez, J.F.; Thompson, R.C.; Meng, F.; Stead, J.D.; et al. Dysregulation of the Fibroblast Growth Factor System in Major Depression. Proc. Natl. Acad. Sci. USA 2004, 101, 15506–15511.
Beaulieu, J.-M. A Role for Akt and Glycogen Synthase Kinase-3 as Integrators of Dopamine and Serotonin Neurotransmission in Mental Health. J. Psychiatry Neurosci. 2012, 37, 7–16.
Miskowiak, K.W.; Vinberg, M.; Harmer, C.J.; Ehrenreich, H.; Knudsen, G.M.; Macoveanu, J.; Hansen, A.R.; Paulson, O.B.; Siebner, H.R.; Kessing, L.V. Effects of Erythropoietin on Depressive Symptoms and Neurocognitive Deficits in Depression and Bipolar Disorder. Trials 2010, 11, 97.
Eden Evins, A.; Demopulos, C.; Yovel, I.; Culhane, M.; Ogutha, J.; Grandin, L.D.; Nierenberg, A.A.; Sachs, G.S. Inositol Augmentation of Lithium or Valproate for Bipolar Depression. Bipolar Disord. 2006, 8, 168–174.
Cattaneo, A.; Sesta, A.; Calabrese, F.; Nielsen, G.; Riva, M.A.; Gennarelli, M. The Expression of VGF Is Reduced in Leukocytes of Depressed Patients and It Is Restored by Effective Antidepressant Treatment. Neuropsychopharmacology 2010, 35, 1423–1428.
Urbán, N.; Blomfield, I.M.; Guillemot, F. Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. Neuron 2019, 104, 834–848.
Kukekov, V.G.; Laywell, E.D.; Suslov, O.; Davies, K.; Scheffler, B.; Thomas, L.B.; O’Brien, T.F.; Kusakabe, M.; Steindler, D.A. Multipotent Stem/Progenitor Cells with Similar Properties Arise from Two Neurogenic Regions of Adult Human Brain. Exp. Neurol. 1999, 156, 333–344.
Alvarez-Buylla, A.; García-Verdugo, J.M. Neurogenesis in Adult Subventricular Zone. J. Neurosci. 2002, 22, 629–634.
Liu, Z.; Martin, L.J. Olfactory Bulb Core Is a Rich Source of Neural Progenitor and Stem Cells in Adult Rodent and Human. J. Comp. Neurol. 2003, 459, 368–391.
Kempermann, G. Regulation of Adult Hippocampal Neurogenesis—Implications for Novel Theories of Major Depression 1: Regulation of Adult Hippocampal Neurogenesis. Bipolar Disord. 2002, 4, 17–33.
Mansoor, A.K.; Thomas, S.; Sinha, J.K.; Alladi, P.A.; Ravi, V.; Raju, T.R. Olfactory tract transection reveals robust tissue-level plasticity by cellular numbers and neurotrophic factor expression in olfactory bulb. Indian J. Exp. Biol. 2012, 50, 765–770.
Feldmann, R.E.; Mattern, R. The Human Brain and Its Neural Stem Cells Postmortem: From Dead Brains to Live Therapy. Int. J. Leg. Med. 2006, 120, 201–211.
Lindvall, O.; Kokaia, Z. Recovery and Rehabilitation in Stroke: Stem Cells. Stroke 2004, 35, 2691–2694.
Sachdeva, P.; Ghosh, S.; Ghosh, S.; Han, S.; Banerjee, J.; Bhaskar, R.; Sinha, J.K. Childhood Obesity: A Potential Key Factor in the Development of Glioblastoma Multiforme. Life 2022, 12, 1673.
Ghosh, S.; Manchala, S.; Raghunath, M.; Sharma, G.; Singh, A.K.; Sinha, J.K. Role of Phytomolecules in the Treatment of Obesity: Targets, Mechanisms and Limitations. Curr. Top. Med. Chem. 2021, 21, 863–877.
Goldman, S. Stem and Progenitor Cell–Based Therapy of the Human Central Nervous System. Nat. Biotechnol. 2005, 23, 862–871.
Lipska, B.K. Using Animal Models to Test a Neurodevelopmental Hypothesis of Schizophrenia. J. Psychiatry Neurosci. 2004, 29, 282–286.
Feldmann, R.E.; Sawa, A.; Seidler, G.H. Causality of Stem Cell Based Neurogenesis and Depression—To Be or Not to Be, Is That the Question? J. Psychiatr. Res. 2007, 41, 713–723.
Zhao, C. Distinct Morphological Stages of Dentate Granule Neuron Maturation in the Adult Mouse Hippocampus. J. Neurosci. 2006, 26, 3–11.
免責(zé)說(shuō)明:本文僅用于傳播科普知識(shí),分享行業(yè)觀點(diǎn),不構(gòu)成任何臨床診斷建議!杭吉干細(xì)胞不保證信息的準(zhǔn)確性和完整性。所發(fā)布的信息不能替代醫(yī)生或藥劑師的專(zhuān)業(yè)建議。如有版權(quán)等疑問(wèn),請(qǐng)隨時(shí)聯(lián)系我。